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Abstract. Under the name prime decomposition (PD), a unique decomposition of an arbitraryN -
dimensional density matrixρ into a sum of separable density matrices with dimensions determined
by the coprime factors ofN is introduced. For a class of density matrices a complete tensor product
factorization is achieved. The construction is based on the Chinese remainder theorem, and the
projective unitary representation ofZN by the discrete Heisenberg groupHN . The PD isomorphism
is unitarily implemented and it is shown to be co-associative and to act onHN as comultiplication.
Density matrices with complete PD are interpreted as group-like elements ofHN . To quantify the
distance ofρ from its PD a trace-norm correlation indexE is introduced and its invariance groups
are determined.

Quantum correlations, an emblematic notion of quantum theory, has remained an open
challenge since the early days of quantum mechanics [1, 2]. Recent investigations have set
important questions concerning classification of various types of quantum correlations and
their appropriate quantification. These theoretical activities have parallel developments with,
and are partly motivated by, recent interesting proposals which engage quantum correlations
to such diverse tasks as e.g. quantum computation and communication [3, 4], quantum
cryptography [5], teleportation [6], and some new frequency standards [7]. Although the
classification of quantum correlations is still open to refinements, it appears to include the
following cases: for pure states, correlations entail nonlocality and give rise to violation of Bell
inequalities [2]. For mixed states, two systems are considered uncorrelated if the composite
system density matrix factorizes into a product of reduced density matrices, one for each
isolated quantum subsystem, namelyρ = ρ1 ⊗ ρ2, whereρ1,2 = tr1,2 ρ, are determined by
partial tracing. Quantification measures for that case include the von Neumann entropy [8] and
other invariant indices [9]. On the other hand classical correlations for quantum subsystems
imply separability of the joint system density matrix, which is analysed into a convex sum for
products of pure states namely,ρ =∑i piρ

i
1⊗ ρi2, 06 pi 6 1,

∑
i pi = 1, [10]. Necessary

and sufficient conditions for the existence of such convex decompositions forρ’s acting on
C2 × C2 andC2 × C3 became available recently [11, 12]. Upper bounds for the number of
terms in such convex expansions of separable matrices have also been determined, together
with construction algorithms for the cases dimH 6 6 [13] and dimH 6 ∞ [14]. Beyond
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these types of classical correlations we encounter inseparable or entangled quantum states.
For their characterization and the quantification of their entanglement some general conditions
have been presented that good entanglement measures should satisfy [15].

In this letter we address the problem of theprime decomposition(PD) of a finite,
but otherwise arbitrary,N -dimensional square density matrixρ, into a sum of products of
elementary density matrices, the number and the respective dimensions of which are determined
by the compositeness of the dimension ofρ. This is achieved by means of (i) the so-called
Chinese remainder theorem (CRT) [16], that is based on the prime decomposition ofN (this
also explains the name we have chosen for the decomposition), and (ii) by the fact that the
discrete Heisenberg groupHN provides a projective representation of the abelian cyclic group
ZN [17]. More concretely, ifN = p

m1
1 p

m2
2 . . . p

mt
t is the prime factor decomposition ofN ,

wherep’s are distinct primes, then the PD of the density matrix involves square matrices
ρ(i) i = 1, . . . , t , with power prime dimension equal toNi = p

mi
i . Also, the numbert of

ρ-factors is bounded by the number of coprime factors ofN . As a measure of the correlation
of a given mixed stateρ, with its possible prime or other decomposition, we evaluate the
trace-norm distance between the two densities, study its unitary invariant symmetries, and
interpret it in terms of the quantum variances between local operators of the subsystems of the
decomposition.

We start by considering the matrix realization of the discrete Heisenberg groupHN

generated by the operator set ofN2 elementsJm ≡ Jm1m2 = ω
1
2m1m2gm1hm2, where the

matrices

g = diag(1, ω, . . . , ωN−1)

h =
∑
n∈ZN
|n〉〈n + 1| (1)

satisfy the relationsωgh = hg, h† = h−1, gN = hN = 1I, hh† = h†h = 1I, gg† = g†g = 1I,
with ωN = 1, and(m1, m2) ∈ Z2

N , the square index-lattice. By virtue of these relations the
following commutators are valid [18, 19, 20]:

[Jm, Jn] = −2i sin
[ π
N
m× n

]
Jm+n (modN). (2)

Moreover, due to linear independence, completeness and the orthonormality issued by the
relation

Tr JmJn = Nδm+n,0 (modN) (3)

the same generator set forms a basis of thesu(N) matrices [17].
Let us consider anN -dimensional quantum systemS with Hilbert spaceHN . The

generators of the finite Heisenberg groupHN provide an operator basis{Jm|m ∈ Z2
N } for

the decomposition of the density matrixρ of S, namely

ρ = 1

N

∑
m∈Z2

N

(λmJm) = 1

N

[
1I +

∑
m∈Z∗2N

λmJm

]
(4)

with Z∗2N ≡ ZN ×ZN \ (0, 0). We note here that, due to the Hermitian conjugation of the basis
elements i.e.J †

m = J−m1,−m2 = JN−m1,N−m2, the Hermiticity of the density matrix implies
for its elements the reality conditionsλ∗m = λN−m. Let us assumeN to be a composite
positive integer with prime-power decompositionN = pn1

1 p
n2
2 . . . p

nt
t ≡ N1N2 . . . Nt , where

each of the factors is distinct, uniquely determined and relatively prime to each other, i.e.
gcd(Ni, Nj ) = 1 wheni 6= j . Then according to CRT the isomorphismZN ∼= ZN1⊕· · ·⊕ZNt
is valid for the index-cyclic groups labelling the operator basis. To proceed we introduce the

group isomorphic mapZ2
N

δ→ Z2
N1
⊕ · · · ⊕ Z2

Nt
between the cyclic groups. The explicit
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definition reads:(m1, m2)
δ→ (δ(m1), δ(m2))

δ→ (m11;m21, m12;m22, . . . , m1t ;m2t ), where
m1i = m1 − pNi , m2i = m2 − qNi , i = 1, . . . , t , p, q ∈ Z, stand for the residues of the
division ofm1, m2 byNi .

Next, we regard the fact thatHN provides a projective unitary representation of
the additive cyclic groupZ2

N , by means of the mapZ2
N

πN→ HN . More explicitly,

(m1, m2)
πN→ πN(m1, m2) = Jm1,m2, with the propertyπN(m + n) = Jm+n = JmJnei

2m×n =
πN(m)πN(n)e

i
2m×n, wherem×n := m1n2−m2n1. Then the following commutative diagram:

Z2
N

δ−→ Z2
N1
⊕ · · · ⊕ Z2

Nt

πN ↓ ↓ πN1 × · · · × πNt
HN −→

πδ

HN1 ⊗ · · · ⊗HNt

given by the equationπδ ◦πN = (πN1 × · · ·×πNt ) ◦ δ, induces the isomorphism of CRT from
the index-groups to the associated Heisenberg groups by the following component version of
the above diagram:

m
δ−→ δ(m) = (m11;m21, . . . , m1t ;m2t )

πN ↓ ↓ πN1 × · · · × πNt
πN(m) = Jm −→

πδ

πδ(Jm) = Jδ(m) = J(m11;m21,...,m1t ;m2t )

We state the main proposition for the prime decomposition.

Proposition. The isomorphismπδ, determined by the commutative diagram figure, via its
component version, is a linear map which induces theδ-map of CRT into the Heisenberg
groupHN , and provides the unique PD of elements ofHN . Alsoπδ is implemented by unitary
operator in the Hilbert spaceHN and possesses the co-associativity property.

Proof. If m ∈ Z2
N andJm = ω1/2m1m2gm1hm2, thenδ(m1, m2) = (m11;m21, . . . , m1t ;m2t ),

withm1i andm2i the residues of the division ofm1, m2 byNi , respectively. According to CRTδ
is an isomorphism, the determination of which provides the solution of a system of congruences
m1 ≡ m1i (modNi) andm2 ≡ m2i (modNi), when gcd(Ni, Nj ) = 1, Ni 6= Nj , i.e. when
Ni,Nj i = 1, . . . , t , are pairwise coprime positive integers. Inversely, given the residues, the
numbersm1, m2 can be determined in a mixed-radix notation bym1 ≡

∑t
i=1m1iNiyi and

m2 ≡
∑t

i=1m2iNiyi , (modN), whereNi := N
Ni

andyi is the solution of the congruence

Niyi ≡ 1, (modNi). Alternatively, by means of the Euler functionφ(k), which counts the

positive integersl 6 k, which are coprime tok, theyi are given byyi ≡ Nφ(Ni)−1
i , (modNi).

Thenm1, m2, are expressed in the formm1 ≡
∑t

i=1m1iN
φ(Ni)

i andm2 ≡
∑t

i=1m2iN
φ(Ni)

i

(modN).
We turn now to study the consequences of this decomposition for the generators ofHN .

With the notation as before we obtain the relations

gm1 = g
∑t

i=1m1iN
φ(Ni )

i =
t∏
i=1

g
m1i
i (5)

wheregi := gNiφ(Ni) andgNii = gNiNiφ(Ni) = gNφ(Ni) = 1I. Analogous relations hold for
the generatorhm2. By direct computations it is verified thatgihj = hjgi if i 6= j , and

gki h
l
i = ωkli hligki , whereωi := ωN2φ(Ni )

i . This definition implies thatωi is periodic with respect
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to the coprime factors ofN i.e. ωNii = ωNiN
2φ(Ni )
i = 1, for i = 1, . . . , t . Using the above

commutation properties of the generators we write:

πδ ◦ πN(m1, m2) = πδ(Jm1m2) =
t∏
i=1

ω
1/2m1im2i
i g

m1i
i h

m2i
i ≡

t∏
i=1

J (i)m1im2i

∼= ⊗ti=1 J
(i)
m1im2i

= (πN1 × · · ·πNt )(m11m21, . . . , m1tm2t ). (6)

The isomorphism introduced above is based on the fact that theJ (i)m1im2i
’s are commuting for

different i’s and their moduli make them behave as copies (πδ-isomorphic images) of the
original Jm1m2 ∈ HN , with periodicitiesNi 6 N ; this is similar to harmonics in Fourier
analysis. The following embedding provides the explicit form of the isomorphism:

J (i)m1im2i

∼= 1IN1 ⊗ · · · ⊗ Jm1im2i ⊗ · · · ⊗ 1INt = πNi (m1i , m2i ) ∈ HNi (7)

with m1i , m2i ∈ Z2
Ni

; this provides the commutativity of the diagrams.
The prime decomposition of a general density matrix given in equation (4) with coefficients

ρm = TrN(Jmρ), can now be evaluated and reads,

πδ(ρ) = 1

N

∑
(m1,m2)∈Z2

N

ρδ(m1,m2)πδ(Jm1,m2) =
1

N

∑
(m1,m2)∈Z2

N

ρδ(m1,m2)Jδ(m1,m2)

∼= 1

N

∑
(m11m21)∈Z2

N1

. . .
∑

(m1tm2t )∈Z2
Nt

ρm11m21,...,m1tm2t Jm11m21 ⊗ · · · ⊗ Jm1tm2t (8)

whereρm11m21,...,m1tm2t = TrN1 . . .TrNt (πδ(ρ)Jm11m21 ⊗ · · · ⊗ Jm1tm2t ).
This suggests that we first mapρ into πδ(ρ), according to the previous analysis and then

project along theJ (i)m1i m2i
’s , in order to determine the coefficients of theρ-matrix factors in the

prime decomposition.
A special form of PD that contains only a single product term is possible for a special

class of density matrices with coefficientsρm = 1
N
ωf (m), wheref (m) ∈ l2(Z2

N), an arbitrary
real function. Iff (m) = ∑kl fklm

k
1m

l
2, the transformed coefficientsρδ(m) = 1

N
ωf (δ(m)), due

toωN = 1, factorize as follows:

ρδ(m) = 1

N
ω
∑t

i=1

∑
kl fklm

k
1im

l
2jN

φ(Ni )

i N
φ(Nj )

j

= 1

N
ω
∑t

i=1

∑
kl fklm

k
1im

l
2iN

2φ(Ni )
i

=
t∏
i=1

1

Ni
ω
f (m1i ,m2i )

i =:
t∏
i=1

ρ(m1i ,m2i ). (9)

Note that power raising is counted (modN ), so above a Frobenious type of map has been

used i.e.mk1 = (
∑t

i=1m1iN
φ(Ni)

i )k = ∑t
i=1m

k
1iN

φ(Ni)

i (modN ). Therefore we obtain the
PD πδ(ρ) = ρ(1) ⊗ · · · ⊗ ρ(t), whereρ(l) = ∑

(m1l ,m2l )∈Z2
Nl

ρ(m1l ,m2l )Jm1lm2l . In view of the

co-associative property of theπδ, to be established shortly, we see that those matrices that
admit such complete factorization behave as group-like elements under the PD map.

To proceed we study the unitary implementation of the PD of density matrices. We
introduce the operatorVδ : HN −→ ⊗ti=1HNi , given by

Vδ =
∑
n∈ZN
|δ(n)〉〈n| ≡

∑
n∈ZN
|{ni}〉〈n| =

∑
n∈ZN
|n1〉 ⊗ · · · ⊗ |nt 〉〈n| (10)

and its conjugate

V
†
δ = Vδ−1 =

∑
{ni }∈{ZNi }

|δ−1({ni})〉〈{ni}| ≡
∑

{ni }∈{ZNi }
|δ−1(n1, . . . , nt )〉〈n1| ⊗ · · · ⊗ 〈nt | (11)
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(this δ, as the one used earlier, maps numbers to their respective residues; see below). These
operators form a conjugate pair that obeys the unitarity conditionVδV

†
δ = ⊗ti=11IHNi and

V
†
δ Vδ = 1IHN . It is then straightforward to verify that the PD mapπδ acting on general

density matrix is implemented by the unitary similarity transformation i.e.πδ(ρ) = VδρV †
δ ∈

⊗ti=1HNi .
Finally, we study briefly an important property of the PD mapπδ, namely that it becomes

a co-associative comultiplication of the Heisenberg groupHN ; this illustrates a connection of
CRT with Hopf algebras [21] in the framework of quantum mechanical correlations. Consider
the mapδn1,n2(x) = (x − ρn1, x − σn2), ρ, σ ∈ Z, by which ax ∈ Zn1n2 decomposes into its
residues w.r.t. coprimesn1, n2. Also consider its dual mapµn1,n2(a, b) ≡ anφ(n1)

2 +bnφ(n2)

1 = x
(modn1n2), which constructs the solution of the congruencesx ≡ a (modn1), x ≡ b (mod
n2), according to CRT. Then we check that forN1, N2, N3, three coprime factors ofN , the
following equation is valid on anya ∈ ZN :

(δN1,N2 × id) ◦ δN1N2,N3 = (id × δN2,N3) ◦ δN1,N2N3. (12)

This is dual to the relation

µN1N2,N3 ◦ (µN1,N2 × id) = µN1,N2N3 ◦ (id × µN2,N3) (13)

which holds if we are given three congruences and combine them pairwise in two different
ways. This (co)associativity of the CRT maps, in turn is induced into the PD mapπδ, where
it takes the form

(πδN1,N2
⊗ id) ◦ πδN1N2,N3

= (id ⊗ πδN2,N3
) ◦ πδN1,N2N3

. (14)

As an example we take the system

x ≡ 2 (mod 3)

x ≡ 2 (mod 4)

x ≡ 3 (mod 5)

(15)

with solutionx = 38 (mod 60), and obtain

µ3·4,5 ◦ (µ3,4× id)(2, 2, 3) = µ3·4,5(2, 3) = 38

µ3,4·5 ◦ (id × µ4,5)(2, 2, 3) = µ3,4·5(2, 18) = 38.
(16)

Dualizing, we recover the relation for theδ’s which induces the co-associativity of the PD
mapping:

(id ⊗ πδ4,5) ◦ πδ3,4·5(ρ) = (πδ3,4 ⊗ id) ◦ πδ3·4,5(ρ) (17)

for ρ ∈ H60. Closing this proof we note that the integral
∫
N

: HN −→ C, with
definition

∫
N
ρ := TrN ρ, is invariant under the comultiplicationπδN1,N2

, in the sense that
(
∫
N1
⊗ ∫

N2
) ◦ πδN1,N2

(ρ) = ∫
N
ρ. �

We turn now to the study of the correlation between finite quantum systems. We start
with two systems with state vector Hilbert spaces of dimensionN1, N2 respectively. Any
observable and density matrix is expressed by the elements of the Lie algebrau(N1), u(N2)

correspondingly. For the density matrix of system-1 e.g.

ρ(1) = 1

N1

[
1I(1) +

∑
m∈Z2∗

N1

λ(1)m J
(1)
m

]
(18)
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and similarly for system-2. The choice of the operator basis(1I(i), J (i)m ), (i = 1, 2), for the
Lie algebrau(Ni) ≈ u(1)⊕ su(Ni) is an important one. For a composite system the density
matrix reads [22]

ρ = 1

N1N2

[
1I(1) ⊗ 1I(2) +

∑
m∈Z2∗

N1

λ(1)m J
(1)
m ⊗ 1I(2) +

∑
n∈Z2∗

N2

λ(2)n 1I(1) ⊗ J (2)n

+
∑
m∈Z2∗

N1

∑
n∈Z2∗

N2

λ(1,2)mn J
(1)
m ⊗ J (2)n

]
(19)

where λ(1)m ≡ 〈J (1)m 〉 = Tr(ρ · J (1)m ⊗ 1I(2)), λ(2)m ≡ 〈J (2)m 〉 = Tr(ρ · 1I(1) ⊗ J (2)m ) and
λ(1,2)mn ≡ 〈J (1)m ⊗ J (2)n 〉 = Tr(ρ · J (1)m ⊗ J (2)n ), the correlation components. Also by partial
tracing we defineρ(1) = Tr2 ρ, ρ(2) = Tr1 ρ. To proceed with the definition of the correlation
index we view the space of matricesρ ∈ u(N1)⊗ u(N2) ≡ G, as a norm space with Hilbert–
Schmidt (HS) norm,

‖A‖(2) ≡
√
< A,A > = (TrA†A)1/2 =

√√√√ N2∑
ij=1

|aij |2 (20)

for A = (aij ) ∈ G. This is essentially a Frobenius-type matrix norm, which is unitarily
invariant i.e.‖UAY‖ = ‖A‖, for U, Y unitary (the lower index of the norm will be omitted
hereafter). Then we propose the following.

Definition. The correlation scalar index of two coupled finite quantum systems in a mixed
stateρ is defined as [22]

E ≡ ‖1ρ‖2 = ‖ρ − ρ(1) ⊗ ρ(2)‖2. (21)

IndexE provides us with a measure of correlation between the coupled systems in terms of the
difference of the factorized partial density matrices from the density of the composite system.
It is cast in the form

E = ‖ρ‖2 − 2 Tr(ρ · ρ(1) ⊗ ρ(2)) + ‖ρ(1)‖2‖ρ(2)‖2

= 1

N1N2

∑
m∈Z2∗

N1

∑
n∈Z2∗

N2

[λ(1,2)mn − λ(1)m λ(2)n ][λ(1,2)N1−m,N2−n − λ
(1)
N1−mλ

(2)
N2−n] (22)

whereN1, N2-modulo arithmetic applies in the respective indices.

The indexE vanishes for product states and by using the reality conditions of theλi ’s
i.e. λ(ν)∗m = λ

(ν)
m−Nν , ν = 1, 2, λ(1,2)∗m,n = λ

(1,2)
N1−m,N2−n we introduce the matrix3mn :=

λ(1,2)mn − λ(1)m λ(2)n = 〈J (1)m ⊗ J (2)n 〉 − 〈J (1)m 〉〈J (2)n 〉, and re-express the index in the form

E = 1

N1N2
Tr33†. (23)

This last expression suggests first that the indexE is determined by the trace of the covariance
matrix of local observablesJ (1)m and J (2)n , and second that it is invariant under general
unitary tranformations of the groupU(N1 · N2), i.e. 3 → U†3U ; 3† → U†3†U , with
U ∈ U(N1 · N2) ⊂ U(N1)⊗ U(N2). The last inclusion describes the fact that the invariance
unitary group ofE is in general larger than the local unitary transformations in which case the
symmetry group factorizes (cf [9]).

Extensions to three and more coupled systems is straightforward. For three systems
e.g. the composite density matrix involves terms of the operator basis where theJm’s are
embedded in all possible ways in the 3-tensor space. Also for the reduced matrices there are
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various possibilities in this case i.e.ρi,j = Trk ρ andρi = Trjk ρ, with cyclic permutations of
(i, j, k) = (1, 2, 3). This gives rise to different correlation indices i.e.

E123= ‖ρ − ρ(1) ⊗ ρ(2) ⊗ ρ(3)‖2(2)
E1(23) = ‖ρ − ρ(1) ⊗ ρ(23)‖2(2)
E2(13) = ‖ρ − ρ(2) ⊗ ρ(13)‖2(2)
E3(12) = ‖ρ − ρ(3) ⊗ ρ(12)‖2(2).

(24)

Closing, we should mention that the correlation index can be expressed in terms of theP

function of the involved density matrices, associated with theSU(2) group coherent state
of dimensionN . This possibility, as will be explained elsewhere [23], is based on the fact
the thesu(N) algebra generators used here in the expansion of theN -dimensional density
matrices, can be embedded (by means of the polar decomposition of thesu(2) algebra), into
the enveloping algebraU(su(2)). Examples of the finite case together with extensions to
infinite-dimensional quantum systems will also be reported elsewhere.

We acknowledge support from the Greek Secretariat of Research and Technology under
contract5ENE1 95/1981.
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