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Prime decomposition and correlation measure of finite
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Abstract. Under the name prime decomposition (PD), a unique decomposition of an arbitrary
dimensional density matrix into a sum of separable density matrices with dimensions determined

by the coprime factors ¥ is introduced. For a class of density matrices a complete tensor product
factorization is achieved. The construction is based on the Chinese remainder theorem, and the
projective unitary representation@f; by the discrete Heisenberg groffy,. The PD isomorphism

is unitarily implemented and it is shown to be co-associative and to alityoas comultiplication.
Density matrices with complete PD are interpreted as group-like elementg.ofo quantify the
distance ofo from its PD a trace-norm correlation indéxs introduced and its invariance groups

are determined.

Quantum correlations, an emblematic notion of quantum theory, has remained an open
challenge since the early days of quantum mechanics [1, 2]. Recent investigations have set
important questions concerning classification of various types of quantum correlations and
their appropriate quantification. These theoretical activities have parallel developments with,
and are partly motivated by, recent interesting proposals which engage quantum correlations
to such diverse tasks as e.g. quantum computation and communication [3,4], quantum
cryptography [5], teleportation [6], and some new frequency standards [7]. Although the
classification of quantum correlations is still open to refinements, it appears to include the
following cases: for pure states, correlations entail nonlocality and give rise to violation of Bell
inequalities [2]. For mixed states, two systems are considered uncorrelated if the composite
system density matrix factorizes into a product of reduced density matrices, one for each
isolated quantum subsystem, namgly= p1 ® p2, Wherep; » = try, p, are determined by
partial tracing. Quantification measures for that case include the von Neumann entropy [8] and
other invariant indices [9]. On the other hand classical correlations for quantum subsystems
imply separability of the joint system density matrix, which is analysed into a convex sum for
products of pure states namety= Y, pip} ® p5, 0< p; <1, p; = 1, [10]. Necessary

and sufficient conditions for the existence of such convex decompositionssfacting on

C? x C? andC? x C3 became available recently [11, 12]. Upper bounds for the number of
terms in such convex expansions of separable matrices have also been determined, together
with construction algorithms for the cases diih< 6 [13] and dimH < oo [14]. Beyond
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these types of classical correlations we encounter inseparable or entangled quantum states.
For their characterization and the quantification of their entanglement some general conditions
have been presented that good entanglement measures should satisfy [15].

In this letter we address the problem of theéme decompositiofPD) of a finite,
but otherwise arbitrary)NV-dimensional square density matyx into a sum of products of
elementary density matrices, the number and the respective dimensions of which are determined
by the compositeness of the dimensiorpof This is achieved by means of (i) the so-called
Chinese remainder theorem (CRT) [16], that is based on the prime decompositb(tiaé
also explains the name we have chosen for the decomposition), and (ii) by the fact that the
discrete Heisenberg grougy provides a projective representation of the abelian cyclic group
Zy [17]. More concretely, itN = pi" p3?... p/" is the prime factor decomposition of,
where p’s are distinct primes, then the PD of the density matrix involves square matrices
p®W i =1,...,t, with power prime dimension equal t; = p;". Also, the number of
p-factors is bounded by the number of coprime factor&/ofAs a measure of the correlation
of a given mixed state, with its possible prime or other decomposition, we evaluate the
trace-norm distance between the two densities, study its unitary invariant symmetries, and
interpret it in terms of the quantum variances between local operators of the subsystems of the

decomposition.

We start by considering the matrix realization of the discrete Heisenberg diqup
generated by the operator set 8f elements/,, = Jom, = w%mlng’"lhma where the
matrices

g =diagl, o, ..., )
h = Z In)(n + 1 (1)
nely

satisfy the relationsigh = hg, h' = h™t, g¥ =hN =1, hh" = h'h = 1, gg" = gTg = 1,
with oV = 1, and(mq, m»2) € va, the square index-lattice. By virtue of these relations the
following commutators are valid [18, 19, 20]:

[, Ju] = —2i sin[%m x n] Josn  (MoOd N). @)
Moreover, due to linear independence, completeness and the orthonormality issued by the
relation

Tr JpJy = NS0 (mod N) 3)

the same generator set forms a basis ofth@') matrices [17].

Let us consider anv-dimensional quantum syste® with Hilbert spaceHy. The
generators of the finite Heisenberg groH provide an operator basis,,|m € 73} for
the decomposition of the density matgpof S, namely

P = % Z ()\m-lm) = %I::“ + Z )\me:| (4)

2 52
meZly meZyy

with Z2 = Zy x Zy \ (0, 0). We note here that, due to the Hermitian conjugation of the basis
elements i.eJ,Z = Jomy.—m, = IN—mi.N—m,, the Hermiticity of the density matrix implies

for its elements the reality conditiorls, = Ay_,. Let us assumev to be a composite
positive integer with prime-power decompositidh= pj*p5*... p/" = NiN>...N,, where

each of the factors is distinct, uniquely determined and relatively prime to each other, i.e.
gcd(N;, N;) = 1wheni # j. Then according to CRT the isomorphign = Zy, & - - - D Zy,

is valid for the index-cyclic groups labelling the operator basis. To proceed we introduce the

group isomorphic ma;Z,ZV 2 levl DD Z,ZVI between the cyclic groups. The explicit
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definition readsi(mq, m») —8> (8(my), §(m>)) —8> (mq1; mo1, m12, moo, ..., my; moy), Where
my = my — pN;, mgy = my —gqN;, i =1,...,t, p,q € Z, stand for the residues of the
division of m1, my by N;.

Next, we regard the fact thakly provides a projective unitary representation of

N

the additive cyclic groupZ?, by means of the ma;lev — Hpy. More explicitly,
(ml» m2) E) 77:_N(mla mZ) = Jml,mzn with the property”N(m +I’l) = Jusn = ijne'émxn =
7ty (m)my (n)ez™" wherem x n := mny—mony. Then the following commutative diagram:

B, 5 Be--el
TN 4 J TN, X -+ X Ty,
HN e HN1®"'®HN,
TTs
given by the equation; o Ty = (7wy, X - - - X wy,) 08, induces the isomorphism of CRT from

the index-groups to the associated Heisenberg groups by the following component version of
the above diagram:

m — 8(m) = (myy; may, ..., my; M)
TN J J TN, X -+ X Ty,
7-’:N("n) = Jm — nS(Jm) = Jé(m) = J(mu;mgl ..... ma;mo;)
TTs

We state the main proposition for the prime decomposition.

Proposition. The isomorphismrs, determined by the commutative diagram figure, via its
component version, is a linear map which induces &hmmap of CRT into the Heisenberg
group Hy, and provides the unique PD of elementghf. Alsor; is implemented by unitary
operator in the Hilbert spaceé{,y and possesses the co-associativity property.

Proof. If m € le\/ andJ,, = a)l/zmlngmlhmz, thend(mq, mp) = (m11; moq, ..., my; Mmoy),
with my; andm; the residues of the division of;, m, by N;, respectively. According to CRY
isanisomorphism, the determination of which provides the solution of a system of congruences
m1 = my; (Mod N;) andmy = my (mod N;), when gcdN;, N;) = 1, N; # N;, i.e. when

N;,Nji=1,...,¢, are pairwise coprime positive integers. Inversely, given the residues, the
numbersny, m, can be determined in a mixed-radix notationhy = Zﬁzlml,-ﬁ,-yi and

my = Y ;_ymzN,y;, (mod N), whereN; := {- andy; is the solution of the congruence
N,y = 1, (modN;). Alternatively, by means of the Euler functigr(k), which counts the
positive integers < k, which are coprime ta, they; are given byy;, = ﬁf’w")_l, (modN;).
Thenmy, m,, are expressed in the formy = 3 myuN' ™ andm, = Y ma N ™

(modN).
We turn now to study the consequences of this decomposition for the generatdys of
With the notation as before we obtain the relations

t
: —$(Np) )
g =gtV = [Tgm (5)
i=1

whereg; 1= gVi*™) andg) = gNiNiw(Nd = ¢Ne() — 1. Analogous relations hold for
the generatok™2. By direct computations it is verified thath; = h;g; if i # j, and

Kl — okl ok L. NP . T . y .
gih; = w'h; gf, wherew; 1= " . This definition implies thad; is periodic with respect
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to the coprime factors o i.e. ) = w¥¥ = 1,fori = 1,...,¢ Using the above
commutation properties of the generators we write:

1
| | 1/2myima; maj o _ | | i
Ts O ]TN(mla m2) = T[B(Jmlmz) = a)i gi hi = J”(11)1m21
i=1 i=1

= ®j Jrfllf,mz, (TN, X -y (mygmoy, . .., mymoy;). (6)

The isomorphism introduced above is based on the fact thal,fihh% 's are commuting for

differenti’s and their moduli make them behave as copiesigomorphic images) of the
original J,,,,, € Hy, with periodicitiesN; < N; this is similar to harmonics in Fourier
analysis. The following embedding provides the explicit form of the isomorphism:

‘In(;l),mz, =1y, @ - @ Jnymy ® -+ ® Uy, = 7y, (ma;, ma;) € Hy, @)

with mq;, my; € ZN,_, this provides the commutativity of the diagrams.
The prime decomposition of a general density matrix given in equation (4) with coefficients
pm = Try(J,p), can now be evaluated and reads,

1 1
7T5(/0) = N Z pé(ml,mg)né(-]ml,mz) = N Z pB(ml,mz)]S(ml,mz)

(ml,mz)eZ§] (ml,mz)ezjz\,

e

1
N Z s Z Pmyiman,....muma Jmnmzl X ® Jmlrmzr (8)

(m11mo1) EZ%& (myma;) 6713%],

Wherepmnm21 ..... mymy = Ter o TrN, (75 (p)‘]mumn - Jml,mz,)-

This suggests that we first magnto 7z5(p), according to the previous analysis and then
project along thern(;l) ny S+ inorder to determine the coefficients of thematrix factors in the
prime decomposition.

A special form of PD that contains only a single product term is possible for a special
class of density matrices with coefficients = wf m where f (m) € l,(Z3), an arbitrary
real function. If f(m) = Y, fumimb, the transformed coefficients ;) = wa(‘“’””, due
to o = 1, factorize as follows:

~¢(N )0 (N ;)

Psm) = %wz, 12 fklmj_,’"zj i N;

1 —26(N})
— _wZ _1 2w fumk;mh N;

t '
1—[ 1 )
N; wif(ml“mm = | | Py ma) - 9)
t i=1

i=1
Note that power raising is counted (mad), so above a Frobenious type of map has been
used i.emt = (X 1m1, N = 3k WYY (mod N). Therefore we obtain the
PDrs(p) = pP @ --- ® p(’) wherep® = Z(m:u,mz/)ezi,l Pty .ma) Imymy - 1N View of the
co-associative property of the;, to be established shortly, we see that those matrices that
admit such complete factorization behave as group-like elements under the PD map.
To proceed we study the unitary implementation of the PD of density matrices. We

introduce the operatdl’,g tHy — ®!_Hy,, given by

=Y BB)inl= Y lnhinl = Y In1) © - ® |ni)(nl (10)

nely nely nely
and its conjugate
Vi=Via= Y 5N mh)ndll= D 18w on)) (] @ ® (| (12)

{niYe{Zn; } {ni}e{Zy; }
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(this 8, as the one used earlier, maps numbers to their respective residues; see below). These
operators form a conjugate pair that obeys the unitarity condiil?igdr}T = ®j_1y, and
V;VS = 1y,. Itis then straightforward to verify that the PD map acting on general
density matrix is implemented by the unitary similarity transformationis€p) = Vg,OV(ST €
®§=1HNi .

Finally, we study briefly an important property of the PD namgpnamely that it becomes
a co-associative comultiplication of the Heisenberg grélip this illustrates a connection of
CRT with Hopf algebras [21] in the framework of quantum mechanical correlations. Consider
the maps,, »,(x) = (x — pn1, x —ony), p, o € Z, by which ax € Z,,,, decomposes into its
residues w.r.t. coprimes, n. Also consider its dual ma,, ., (@, b) = anf "’ +bn?"? = x
(modniny), which constructs the solution of the congruences a (modn;), x = b (mod
ny), according to CRT. Then we check that 9§, N, N3, three coprime factors a¥, the
following equation is valid on any € Zy:

BNy, X 0d) 0 8y, N, as = (i X i, ;) © SNy, NoNs- (12)
This is dual to the relation
NN, Ng © (g N, X 1) = vy apivg © (D X p,, ) (13)

which holds if we are given three congruences and combine them pairwise in two different
ways. This (co)associativity of the CRT maps, in turn is induced into the PDanaphere
it takes the form

(jT5N1.N2 ® |d) o JT(;NlNZ.N3 = (ld ® 7T5N2_N3) @) 7T5N1_N2N3. (14)

As an example we take the system

x=2 (mod 3
x=2 (mod 4 (15)
x=3 (mod)H

with solutionx = 38 (mod 60), and obtain
3450 (n3a x id)(2,2,3) = uz4s(2,3) =38
3 as0 (id x was)(2,2,3) = p3as5(2,18) = 38.

Dualizing, we recover the relation for tt#és which induces the co-associativity of the PD
mapping:

(16)

(id ® 75, 5) 0 755,45 (0) = (755, @ i) 0 75,5 (P) (17)

for o € Hg. Closing this proof we note that the integrﬁb . Hy — C, with
definition [, p := Try p, is invariant under the comultiplicatiom;, , , in the sense that

(le ®fN2) o 7T5N1,N2(IO) = fN P 0

We turn now to the study of the correlation between finite quantum systems. We start
with two systems with state vector Hilbert spaces of dimengV@nN, respectively. Any
observable and density matrix is expressed by the elements of the Lie algdiyau(N,)
correspondingly. For the density matrix of system-1 e.g.

1
oM = V[]l(lu > Af,})J,;“] (18)
1

2
meZN1
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and similarly for system-2. The choice of the operator bé#id, ("), (i = 1,2), for the
Lie algebrau(N;) ~ u(1) & su(N;) is an important one. For a composite system the density
matrix reads [22]

o= 1 [],u) 212+ Y 20D @12+ 3 2210 g @

N1N.
1iv2 mEZ%,*l nerfz

+ Y > PP e J(2)] (19)

meZZ* n EZZ*

where AV = (JD) = Tr(p - JO @ 1?), A@ = (J@) = Tr(p - 1Y @ J?) and
AL = (JD @ JP) = Tr(p - J ® J@), the correlation components. Also by partial
tracing we defing® = Tr, p, p@ = Try p. To proceed with the definition of the correlation
index we view the space of matricess u(N1) ® u(N,) = G, as a norm space with Hilbert—
Schmidt (HS) norm,

N2
Al = V<A A>=(TrATA 2= | 3" a2 (20)
ij=1

for A = (a;;) € G. This is essentially a Frobenius-type matrix norm, which is unitarily
invarianti.e.|[UAY || = ||A], for U, Y unitary (the lower index of the norm will be omitted
hereafter). Then we propose the following.

Definition. The correlation scalar index of two coupled finite quantum systems in a mixed
statep is defined as [22]

E=apll?=llp — oY ® p?@ 2. (21)

Index¢ provides us with a measure of correlation between the coupled systems in terms of the
difference of the factorized partial density matrices from the density of the composite system.
Itis cast in the form

E= ||p||2 —2Tr(p - p®P @ p@) + 1| pP 2] p?I?

1,2 1), (2 12 0] 2
Z Z [)\'l(ﬂl’l ) — )\'1(41))\'1(1 )][)‘Nl—m,Nz —n )LNl m)\'Ng n] (22)

meZz* neZz*

N1N2

whereN;, No-modulo arithmetic applies in the respective indices.

The index& vanishes for product states and by using the reality conditions of;the

e, A = AW v = 12,402 = a2 . we introduce the matrix,, =

L2 Dy 2 = (gD @ J@) — (J,f}))(Jn(z)) and re-express the index in the form

£ = TrAAT. (23)

1N2

This last expression suggests first that the inflexdetermined by the trace of the covariance
matrix of local observableg) and J(@, and second that it is invariant under general
unitary tranformations of the grouf (N1 - No), i.e. A — UTAU; AT — UTATU, with
U e U(N1-N2) C U(N1) ® U(N>). The last inclusion describes the fact that the invariance
unitary group of is in general larger than the local unitary transformations in which case the
symmetry group factorizes (cf [9]).

Extensions to three and more coupled systems is straightforward. For three systems
e.g. the composite density matrix involves terms of the operator basis whevg, thare

embedded in all possible ways in the 3-tensor space. Also for the reduced matrices there are
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various possibilities in this case i:/ = Tr, p andp’ = Trj; p, with cyclic permutations of
@, j, k) = (1, 2, 3). This gives rise to different correlation indices i.e.

E123=llp — pP ® p? ® p@|I5,
E129 = o — pP @ pP %,
E2a9 = llp — p? ®@ p™|1%,
Eaaz = o — p® @ p1? 1%

Closing, we should mention that the correlation index can be expressed in terms pf the
function of the involved density matrices, associated with $8§2) group coherent state

of dimensionN. This possibility, as will be explained elsewhere [23], is based on the fact
the thesu(N) algebra generators used here in the expansion oNtugmensional density
matrices, can be embedded (by means of the polar decompositionsof(B)ealgebra), into

the enveloping algebr& (su(2)). Examples of the finite case together with extensions to
infinite-dimensional quantum systems will also be reported elsewhere.

(24)
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